Rikaline GPS-24 / 24A
GPS Receiver Board
User’s Guide
Nemerix V1.0 Feb 28, 2005
Rikaline International Corp.
10F, 64, Kang-Ding Road, Taipei 108, Taiwan, R.O.C.
Phone: +886-2-2370-4688 Fax: +886-2-2370-4686
All Right Reserved
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Tracking: -152dBm
Acquisition: -139dBm
3) Acquisition time:
Reacquisition
Hot start
Warm start
Cold start
0.1 sec. (90%)
12 sec. (90%)
38 sec. (90%)
60 sec. (90%)
4) Position accuracy:
Non DGPS (Differential GPS)
Position
Velocity
Time
<7m CEP (90%) with S\A off
0.1 meters/second.
1
microsecond synchronized GPS time
DGPS (Differential GPS)
Position
Velocity
<1 m, typical
0.05 meters/second, typical
5) Dynamic Conditions:
Altitude
10,000 meters(32,800 feet) max
Velocity
Horisontal
Vertical
300 Km/Hr
36 Km/Hr
Acceleration
Jerk
2 G, max
4 meters/second³, max
6) Time-1PPS Pulse (optional)
Level
TTL
Pulse duration
Time reference
Measurements
100ms
at the pulse positive edge
Aligned to GPS second, +-1 microsecond
7) 2.1.10 Recommended External Antenna Specification
Gain
20dB (including cable loss)
Noise figure
Current
Operate Voltage
1.5dB
3 ~ 30mA
2.5 ~ 2.8V
1.4.5 Interfaces
1) Dual communication channel through TTL, with user selectable baud rate (4800, 9600-Default, 19200,
38400).
2) NMEA 0183 Version 3.0 ASCII output (GGA, GSV(3), GSA(3), RMC, VTG).
3) Real-time Differential Correction input (RTCM SC-104 message types 1, 2 and 9).
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
3
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
2. Operational characteristics
2.1 Initialization
As soon as the initial self-test is complete, the GPS-22 begins the process of satellite acquisition and
tracking automatically. Under normal circumstances, it takes approximately 120 seconds to achieve a
position fix, 42 seconds if ephemeris data is known. After a position fix has been calculated, information
about valid position, velocity and time is transmitted over the output channel.
The GPS-22 utilizes initial data, such as last stored position, date, time and satellite orbital data, to achieve
maximum acquisition performance. If significant inaccuracy exists in the initial data, or the orbital data is
obsolete, it may take more time to achieve a navigation solution. The FirstGPS™ architecture provides
superior performance. However, acquisition performance can be improved as the host system initializes the
GPS-22 in the following situation:
1. Moving further than 1,500 kilometers.
2. Failure of Data storage due to the inactive memory power back up.
2.2 Navigation
After the acquisition process is complete, the GPS-22 sends valid navigation information over output
channels. These data include:
1) Latitude/longitude/altitude
2) Velocity
3) Date/time
4) Error estimates
5) Satellite and receiver status
The GPS-22 sets the default of auto-searching for real-time differential corrections in RTCM SC-104
standard format, with the message types 1, 2, or 9. It accomplishes the satellite data to generate a
differential (DGPS) solution. The host system, at its option, may also command the GPS-22 to output a
position whenever a differential solution is available.
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
4
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
3. Hardware interface
3.1 Physical Characters
1. Size: 25.9(W) x 25.9(D) x 2.7(H) (mm)
1.02”(W) x 1.02”(D) x 0.11”(H)
2. Weight: 25 g
3.1.1 Details Drawing
3.1.1.1GPS-24 (to be equipped with active antenna only)
PinD1
PinA1
Pin1
Pin1
PinD1
PinA1
1// Antenna connector: 1.27 mm pitch, 3 pin board to board
2// Interface connector: 1.27 mm pitch, 10 pin board to board
3// Debug connector: 1.27mm pitch, 6 pin board to board
3.1.1.1GPS-24A (to be equipped with passive antenna or/and active antenna)
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
5
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
3.2 Pin Definition
PIN
NAME
TYPE
DESCRIPTION
GPS Status
Reserved, keep float
NMEA Serial Data Output
NMEA Serial Data Input
Reserved, keep float
Remarks
1
2
3
4
5
GPIO(4)
I \ O
NU
I \ O
I \ O
NC (MODE)
NMEA Tx
NMEA Rx
NC (WAKE UP) NU
6
7
Reset
VBAT
I
I
Low Active, keep float if not use *1 Will not effect hot, or cold start
Backup Battery Input (1.2~2V)
8
GND
PWR Ground
9
VCC
PWR +3.0~3.6V DC Power Input
10
A1
A2
A3
D1
D2
D3
D4
D5
D6
GPIO(0)
RF GND
RF IN
RF GND
DSUMUX
DSUEN
DSUBRE
DSUTX
DSURX
DSUACT
I \ O
ANT
ANT
ANT
I
I
I
O
I
O
SW dependent functions
Antenna ground
Antenna +
Antenna ground
Serial / DSU select
DSU enable
DSU break enable
DSU transmitter
DSU receiver
DSU active
3.3 Operating Modes
3.3.1 GPIO(1) & (4)
It design as spare I\O. You may leave it disconnect of desire.
3.3.2 Reset:
It always requires reset when power-up. Max voltage is 2.0VDC
And will not effect cold start or hot start.
3.3.3 Debug Pins
All pins from D1 to D6 is for development purposes, not for end users except downloading new
software.
3.3.4 Developing Kit
Available at part no. GPS-24-SDK
3.4 Other Electrical Specification
Table 3-1 Absolute Maximum Ratings
Parameter
Power Supply Voltage
Input Pin Voltage
Output Pin Voltage
Reset Pin Voltage
Storage Temperature
Back-up Voltage
Symbol
VDD
VIN
VOUT
Vreset
TSTG
BAT
Min
-0.3
-0.3
-0.3
-0.3
-40
Max
3.6
3.3
3
2.0
100
2.2
Units
V
V
V
V
°C
V
Table 3-2 Operating Conditions
Parameter
Power Supply Voltage
Input Pin Voltage
Operating Temperature
Operating Current ZX4120
Symbol
VCC
VIN
TOPR
ICC
Min
Typ
3.3
3
Max
3.6
3.3
Units
3
V
V
°C
mA
2.7
-40
85
27
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
6
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Table 3-3 Backup Battery Conditions
Parameter
RTC(Battery) Power
Supply Current
Symbol
Min
1.2
Typ
1.8
10
Max
2
Units
V
µA
BAT
Table 3-4 DC Characteristics
Parameter
Input High Level
Input Low Level
Output High Level
Output Low Level
Input Leakage Current
Symbol
Min
Max
3.5
0.8
3.4
0.4
2
Units
Vih
Vil
2.5
0
V
V
Voh
Vol
Li
2.4
0
2
V
V
µA
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
7
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
4. Software Interface
The GPS-24 / 24A interface protocol is based on the National Marine Electronics Association's NMEA 0183
ASCⅡ interface specification, which is defined in NMEA 0183, Version 3.0 and the Radio Technical
Commission for Maritime Services (RTCM Recommended Standards For Differential Navstar GPS Service,
Version 2.1, RTCM Special Committee No.104).
4.1 NMEA Transmitted Messages
The GPS-24 / 24A outputs data in NMEA-0183 format as defined by the National Marine Electronics
Association (NMEA), Standard.
The default communication parameters for NMEA output are 9600 baud, 8 data bits, stop bit, and no parity.
Table 4-1 NMEA-0183 Output Messages
NMEA Record Description
GPGGA
GPGLL
GPGSA
GPGSV
GPRMC
GPVTG
GPZDA
Global positioning system fixed data
Geographic position- latitude/longitude
GNSS DOP and active satellites
GNSS satellites in view
Recommended minimum specific GNSS data
Course over ground and ground speed
Date & Time
Detailed NMEA information is in Appendix A
4.2 RTCM Received Data
The default communication parameters for DGPS Input are 9600 baud, 8 data bits, stop bit, and no
parity. Position accuracy of less than 5 meters can be achieved with the GPS-24 / 24A by using Differential
GPS (DGPS) real-time pseudo-range correction data in RTCM SC-104 format, with message types 1, 5, or
9. As using DGPS receiver with different communication parameters, GPS-24 / 24A may decode the data
correctly to generate accurate messages and save them in battery-back SRAM for later computing.
4.3 Earth Datums
The GPS-24 / 24A is built in earth datum with WGS84.
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
8
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
5. Ordering Information
5.1 Products Options
5.1.1 GPS Receiver Module
GPS-24 Standard with TTL level.
GPS-24-A Standard with TTL level, and available to attach patch antenna on top of the board.
5.2 Accessories
A-10302-M Active Antenna, 2M, MMCX connector.
A-10305-M Active Antenna, 5M, MMCX connector.
6. Warranty
The GPS-24 / 24A series products are warranted to be free from defects in material and functions for one
year from the date of purchase. Any failure of this product within this period under normal conditions will be
replaced art no charge to the customers.
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
9
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Appendix A Software Interface
The GPS-24 / 24A interface protocol is based on the National Marine Electronics Association's NMEA 0183
ASCⅡ interface specification, which is defined in NMEA 0183, Version 3.0 and the Radio Technical
Commission for Maritime Services (RTCM Recommended Standards For Differential Navstar GPS Service,
Version 2.1, RTCM Special Committee No.104).
A.1 NMEA Transmitted Messages
The GPS-24 / 24A outputs data in NMEA-0183 format as defined by the National Marine Electronics
Association (NMEA), Standard.
The default communication parameters for NMEA output are 9600 baud, 8 data bits, stop bit, and no parity.
Table A-1 NMEA-0183 Output Messages
NMEA Record Description
GPGGA
GPGLL
GPGSA
GPGSV
GPRMC
GPVTG
GPZDA
Global positioning system fixed data
Geographic position- latitude/longitude
GNSS DOP and active satellites
GNSS satellites in view
Recommended minimum specific GNSS data
Course over ground and ground speed
Date & Time
A.1.1 Global Positioning System Fix Data (GGA)
$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18
Table A-2 GGA Data Format
Name
Message ID
Example
$GPGGA
Units
Description
GGA protocol header
UTC Time
161229.487
Hhmmss.sss
Latitude
3723.2475
Ddmm.mmmm
N/S Indicator
Longitude
N
N=north or S=south
dddmm.mmmm
12158.3416
E/W Indicator
Position Fix Indicator
Satellites Used
HDOP
MSL Altitude
Units
Geoid Separation
Units
Age of Diff. Corr.
Diff. Ref. Station ID
Checksum
W
1
07
1.0
9.0
M
E=east or W=west
See Table 5-3
Range 0 to 12
Horizontal Dilution of Precision
Meters
Meters
Meters
Meters
second
M
Null fields when DGPS is not used
End of message termination
Description
0000
*18
<CR> <LF>
Table A-3 Position Fix Indicator
Value
0
1
2
3
0 Fix not available or invalid
GPS SPS Mode, fix valid
Differential GPS, SPS Mode, fix valid
GPS PPS Mode, fix valid
A.1.2 Geographic Position with Latitude/Longitude (GLL)
Specifications subject to change without prior notice
10
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Table 4-4 contains the values for the following example:
$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C
Table A-4 GLL Data Format
Name
Message ID
Latitude
N/S Indicator
Longitude
E/W Indicator
UTC Position
Status
Example
$GPGLL
3723.2475
N
12158.3416
W
Units
Description
GLL protocol header
ddmm.mmmm
N=north or S=south
dddmm.mmmm
E=east or W=west
hhmmss.sss
161229.487
A
A=data valid or V=data not valid
Checksum
<CR> <LF>
*2C
End of message termination
4.1.3 GNSS DOP and Active Satellites (GSA)
Table A-5 contains the values for the following example:
$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5*33
Table A-5 GSA Data Format
Name
Message ID
Mode 1
Example
$GPGSA
Units
Description
GSA protocol header
See Table 5-6
A
3
Mode 2
See Table 5-7
Satellite Used (1)
Satellite Used (1)
……
07
02
Sv on Channel 1
Sv on Channel 2
….
Satellite Used
PDOP
HDOP
VDOP
Checksum
<CR> <LF>
Sv on Channel 12
Position Dilution of Precision
Horizontal Dilution of Precision
Vertical Dilution of Precision
1.8
1.0
1.5
*33
End of message termination
(1) Satellite used in solution.
Table A-6 Mode 1
Value
Description
M
A
Manual—forced to operate in 2D or 3D mode
2D Automatic—allowed to automatically switch 2D/3D
Table A-7 Mode 2
Value
Description
1
2
3
Fix Not Available
2D
3D
A.1.4 GNSS Satellites in View (GSV)
Table A-8 contains the values for the following example:
$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71
$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41
Table A-8 GSV Data Format
Name
Message ID
Number of Messages
Example
$GPGSV
2
Units
Description
GSV protocol header
Range 1 to 3
Specifications subject to change without prior notice
11
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Message Number
1
Range 1 to 3
Satellites in View
Satellite ID
Elevation
Azimuth
SNR (C/No)
....
07
07
79
048
42
....
Range 1 to 12
Channel 1 (Range 1 to 32)
degrees Channel 1 (Maximum 90)
degrees Channel 1 (True, Range 0 to 359)
dBHz Range 0 to 99, null when not tracking
Satellite ID
Elevation
27
27
Channel 4 (Range 1 to 32)
degrees Channel 4 (Maximum 90)
Azimuth
138
42
*71
degrees Channel 4 (True, Range 0 to 359)
dBHz Range 0 to 99, null when not tracking
SNR (C/No)
Checksum
<CR> <LF>
End of message termination
NOTE: Items <4>,<5>,<6> and <7> repeat for each satellite in view to a maximum of four (4) satellites per
sentence. Additional satellites in view information must be sent in subsequent sentences. These fields will
be null if unused.
A.1.5 Recommended Minimum Specific GNSS Data (RMC)
Table A-9 contains the values for the following example:
$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10
Table A-9 RMC Data Format
Name
Message ID
UTC Time
Status
Latitude
N/S Indicator
Longitude
E/W Indicator
Speed Over Ground
Course Over Ground
Date
Example
$GPRMC
161229.487
A
3723.2475
N
12158.3416
W
0.13
309.62
120598
Units
Description
RMC protocol header
hhmmss.sss
A=data valid or V=data not valid
ddmm.mmmm
N=north or S=south
dddmm.mmmm
E=east or W=west
Knots
Degrees True
Ddmmyy
Degrees E=east or W=west
Magnetic Variation
Checksum
*10
<CR> <LF>
End of message termination
A.1.6 Course Over Ground and Ground Speed (VTG)
Table A-10 contains the values for the following example:
$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E
Table A-10 VTG Data Format
Name
Message ID
Course
Reference
Course
Example
$GPVTG
309.62
T
Units
Description
VTG protocol header
Degrees Measured heading
True
Degrees Measured heading
Magnetic (1)
Reference
Speed
M
0.13
N
Knots
Measured horizontal speed
Knots
Units
Speed
Units
0.2
K
Km/hr
Measured horizontal speed
Kilometers per hour
Checksum
<CR> <LF>
*6E
End of message termination
(1) All “course over ground” data are geodetic WGS84 directions.
Specifications subject to change without prior notice
12
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
A.1.7 Time & Date (ZDA)
Table A-11 contains the values for the following example:
$GPVTG,114523.62,12,04,2001,10,34*6E
Table A-11 ZDA Data Format
Name
Message ID
Hour, Min, Sec, Sub
Sec
Example
$GPZDA
Units
Description
ZDA protocol header
114523.62
Hhmmss.ss
Day
Month
Year
Local Zone Hours
12
04
2001
10
Day in UTC, 01to 12
Month in UTC, 01 to 12
Year in UTC
Local zone hours, +/- 13 hours
Local Zone Minutes
34
Local zone minutes, 0 to +59
Checksum
*6E
<CR> <LF>
End of message termination
Specifications subject to change without prior notice
13
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Appendix B Reference Design
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
14
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Appendix C Developer’s Setting
For all $PNMRX messages, it is possible to configure an alternative string to replace the NMRX part,
the node always responds to the $PNMRX strings and can be configured to generate and respond to
the alternative string.
C.1 $PNMRX100, Set serial port mode
This message is sent to control the serial communications port parameters. The $PNMRX100
message format is shown below.
Field
Format
Min chars Max
chars
Notes
Message ID
Protocol
$PNMRX100
Char
6
1
6
PNMRX100 protocol header.
1
6
1
0
1
NMEA mode
NemeriX Binary Mode (under dev)
Baud
Int
4
1
1200 / 2400 / 4800 / 9600 / 19200 / 38400 /
57600.
0. None.
1. Odd.
Parity
Char
2. Even.
2 digits.
ASCII 13, ASCII 10.
Checksum
Message terminator <CR> <LF>
*xx
(0) 3
2
3
2
Examples:
$PNMRX100,0,4800,0*xx: sets the UART baud rate to 4800 bps and no parity.
C.2 $PNMRX101, Navigation Initialization
This message is sent to initialize navigation parameters to speed up initial acquisition time. The
$PNMRX101 message format is shown below.
Field
Format
Min
chars
Max
chars
8
(-)7
(-)7
(-)7
6
Notes
Message ID
ECEF_X
ECEF_Y
ECEF_Z
Clock offset
$PNMRX101
6
PNMRX101 protocol header.
Int
Int
Int
Int
(-)7
(-)7
(-)7
(0) 1
Signed ECEF x co-ordinate in meters
Signed ECEF y co-ordinate in meters
Signed ECEF z co-ordinate in meters
Clock offset of GPS receiver, in [Hz x 100] wrt L1.
This changes the clock bias stored in the settings
not the actual clock bias used by the system. A cold
start is necessary, in order to use this value.
Offset from start of week in seconds
GPS week number
Time of week
Week number Int
Channel count Int
Checksum
Message
terminator
Int
1
1
1
6
4
2
3
2
Maximum number of TM to be used. Min 12, max 16.
2 digits.
*xx
<CR> <LF>
(0) 3
2
ASCII 13, ASCII 10.
Note: 1// If used, all three X,Y, and Z components of the ECEF position must be provided, otherwise the
message is declared invalid as a whole
2// Modifying the ECEF coordinates triggers a software system reset after successful execution of the
message
Examples:
$PNMRX101,,,,,,,,8,*xx:
Executes a factory reset
$PNMRX101,-742507,-5462738, 3196706,*xx: Sets the receiver position to ECEF (,) and executes a
software reset
$PNMRX101, 4,*xx:
Sets the fix procedure mode the cold start. This will be
valid after each reset, until this value is changed.
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
15
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
C.3 $PNMRX103, NMEA rate control
This message is being sent to enable or to disable the output of an NMEA message and to determine its
output rate. The sequence of the output sequence is determined by the $PNMRX107 message. The
$PNMRX103 message format is shown below. The rate of each message can individually be set. If ‘0’ is
used, the output of the message is skipped (according to the message sequence). The message length is
limited to 80 characters, in the event that the message length would exceed 80 characters it is divided into 2
messages. This message is supported also in a variable length format, where only the necessary fields are
used.
Field
Format
Min
Max
Notes
chars chars
Message ID
Mask ID
$PNMRX103
Int
8
3
8
3
PNMRX103 protocol header.
Mask identifier: possibilities are
GGA / GLL / GSA / GSV
RMC / VTG / ZDA
ALL (applies to all messages)
Output rate in seconds (0=paused)
Mask identifier.
Mask value
Mask ID
Int
Int
1
2
1
2
Checksum
Message terminator <CR> <LF>
*xx
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
Examples:
$PNMRX103, GSV, 2,GGA, 1,ZDA, 0*xx: GSV is output every 2s,GGA every 1s and ZDA is skipped.
$PNMRX103, GSV, 2, GGA, 1, ZDA, 0,*xx: same as above, but using a fixed length message
$PNMRX103, ALL, 2*xx: all messages are output every 2s.
$PNMRX103, ALL, 0*xx: skips all messages.
C.4 $PNMRX104, LLA navigation initialization
This message enables the receiver to be initialized using LLA data to speed up satellite acquisition. The first
4 values defining the position (if used) must be all present in the message. Otherwise the whole massage is
considered invalid.
Field
Format
Min
Max
Notes
chars char
s
Message ID
Latitude
N/S Indicator
Latitude
E/W Indicator
Altitude
Clock offset
$PNMRX104
Float
Char
Float
Char
8
1,2.1
1
1,2.1
1
(-) 1
(0) 1
8
PNMRX104 protocol header. (Under dev.)
3,2.4 Degrees * 100 + minutes. (Under dev.)
N=north or S=south. (Under dev.)
3,2.4 Degrees * 100 + minutes. (Under dev.)
1
1
(-) 6
6
E=east or W=west. (Under dev.)
Altitude above MSL, in meters.
Clock offset of GPS receiver. These changes the clock
bias stored in the settings, not the actual clock bias used
by the system. A cold start is necessary, in order to use
this value.
Int
Int
Time of week
Week number
Channel count
Checksum
Int
Int
Int
*xx
1
1
1
(0) 3
2
6
4
2
3
2
Offset from start of week in seconds. (Under dev.)
GPS week number.
Maximum number of TM to be used. Min12, max 16.
2 digits.
Message
<CR> <LF>
ASCII 13, ASCII 10.
terminator
Note: 1// If used, all five components (Lat, N/S, Long E/W, alt) of the LLA position must be provided.
Otherwise, the message is declared invalid as a whole
2// Modifying the LLA coordinates triggers a software system reset after successful execution of the
message.
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
16
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
C4.5 $PNMRX106, Datum
This message defines the conversion model used for mapping the ECEF coordinates into the LLA ones. The
default transformation uses WGS84 approximation. The transformation method can be changed into one
using a reference Ellipsoid combined with a local datum, to obtain a specific estimation of the local earth
geometry. Once the datum has been changed it will be applied to all LLA data, including the LLA navigation
initialization Data. This message enables the receiver to be configured to use map datum from an internal
table, or datum supplied as part of the message.
Field
Format
Min
Max
Notes
chars chars
Message ID
Correction Mode Unsigned
$PNMRX106
6
1
8
1
PNMRX106 protocol header.
If 1 apply EGM96 geoids correction (warning:
should be applied only when Map Datum is equal to
216). If 0 there is no EGM96 geoids correction.
Reference number of the appropriate map datum to
apply.
Map Datum
Int
(0) 1
3
0-218 Map datum from internal table
500 User defined Datum
Dx
Dy
Dz
Iflat
Int
Int
Int
Int
(0)
(-)1
(0)
(-)1
(0)
(-)5
(-)5
(-)5
8
X offset in meters (-9999 to 9999)
Y offset in meters (-9999 to 9999)
Z offset in meters (-9999 to 9999)
(-)1
(0) 1
Inverse flatness of reference geode. The value to
be used is (IFlat – 290) * 1000000).
The value must be in the range [6000000,
12000000]
Majora
Int
(0) 1
8
Semi major axis of reference geode. The values to
be used is (MajorA – 6370000) * 1000).
The value must be in the range [6000000,
9000000]
Checksum
Message
terminator
*xx
<CR> <LF>
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
Examples:
$PNMRX106, 0,500, -2000,-2000,-2000, 8257224, 8137000*00*xx: User defined Datum
$PNMRX106, 1, 216,*xx:
WGS 84 Datum
C.6 $PNMRX107, Messages rate control
This message is sent to set the automatic update rate, and to configure which messages will be
automatically output, it is also sent from the node to report which messages are currently configured for
automatic transmission. The $PNMRX107 message format is shown below. This message can be used to
enable and disable multiple messages by including up to 4 message codes and associated fields in each
$PNMRX107 message.
The message length is limited to 80 characters, in the event that the message length would exceed 80
characters it is divided into 2 messages. This message is supported also in a variable length format, where
only the necessary fields are used.
Field
Format
Min
Max
Notes
chars chars
Message ID $PNMRX107
8
3
8
3
PNMRX107 protocol header.
Determines which message is being configured.
300 PNMRX300 Almanac Data
Message
code
Char
301 PNMRX301 Ephemeris Data
302 PNMRX302 lonospheric corrections
303 PNMRX303 UTC Time
304 PNMRX304 GPS constellation health
ALL Applies to all messages
Specifications subject to change without prior notice
17
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Mode
Int
1
1
0
1
2
3
Disable message
Send message now
Send message on change
Send message now and on change
Checksum
Message
*xx
<CR> <LF>
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
terminator
Examples:
$PNMRX107, 300, 1*xx: Output the almanac stored in NVRAM
$PNMRX107, 301, 2*xx: Output Ephemeris will be output on change
$PNMRX107, ALL, 2*xx: Output all ZX4120 output messages (300,301,302,303,304)
C.7 $PNMRX108, NMEA message sequence
This message is used to set the sequence used to output the NMEA messages. All messages in the list are
set to be output with a default output rate. The messages that are not included are disabled. Once the
sequence is defined, individual settings for the messages can be changed by means of the $PNMRX103
message. This message is supported also in a variable length format, where only the necessary fields are
used.
Field
Format
Min
Max
Notes
chars chars
Message ID $PNMRX108
6
3
8
3
PNMRX108 protocol header.
Mask ID
Int
Mask identifier: possibilities are
GGA / GLL / GSA / GSV
RMC / VTG / ZDA
Mask Identifier.
2 digits.
ASCII 13, ASCII 10.
Mask ID
Int
3
(0) 3
2
3
3
2
Checksum
Message
terminator
*xx
<CR> <LF>
Examples:
$PNMRX108, GGA, GLL, and GSA*xx: Enables the GGA, GLL and GSA in this sequence, output
Every second. All other messages are disabled
C.7 $PNMRX110, Fix Settings
This message is used to set various settings and masks which control how the software will behave in
relationship to the satellites in view, for example a mask can be set for the minimum satellite elevation,
minimum SNR etc. The message consists of a varying number of fields depending on the number of masks
to be set. Each mask setting consists if a mask identifier and new value pair. The $PNMRX110 message
format is shown below.
PNMRX110 field list
Field
Format
Min
Max
Notes
chars chars
Message ID
Mask ID
Value
$PNMRX110
Int
Variant
6
2
1
8
2
8
PNMRX110 protocol header.
Mask identifier, see below.
New value for mask, dependent on the preceding
field, see below.
Mask ID
Value
Int
Variant
2
1
2
8
Mask identifier.
New value for mask, dependent on the preceding
field.
Checksum
Message terminator <CR> <LF>
*xx
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
PNMRX110 Mask Field interpretation
Mask Id
mask
format
Int: unsigned
Unsigned
width
2:2
4
units
Hours : Minutes
x10, [0-100]
x10, [0-100]
0
1
2
Local Time Zone
Maximum PDOP1
Maximum HDOP
Unsigned
4
Specifications subject to change without prior notice
18
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
3
4
5
Maximum VDOP1
Minimum SNR
Unsigned
Unsigned
4
2
2
4
1
x10, [0-100]
dB/Hz, [20-45]
Degrees, [0-90]
-, [400-1000]
1
2
4
Minimum Elevation Unsigned
6
7
Noise Floor
Unsigned
Navigation Mode 11 Unsigned
= Auto (hold alt)
= 2D Mode
= 3D Mode (calc alt)
8
9
2D Mode Altitude1
Navigation Mode 21 Boolean
Unsigned
6
1
Meters above MSL
0
1
= Auto
= Static
10
Maximum Altitude
Unsigned
6
Meters.
Examples:
$PNMRX110, 0,-2:0*xx: Set the local time to –2 hours 0 minutes.
$PNMRX110, 4, 35*xx: Set the minimum SNR to 35
C.8 $PNMRX111, Software reset
This message is used to reset the systems. If the message is sent without parameters the receiver reboots
according to the fix procedure (hot, warm or cold) configured with the PNMRX101 or PNMRX104 messages.
A second parameter can optionally be used to specify which actions are executed after the reset. If the last
bit field is set to ‘1’, then the actions are repeated permanently at each reset, until this bit is cleared.
Field
Format
Min
chars
6
Max
chars
Notes
Message ID $PNMRX111
Invalidate
parameter
8
7
PNMRX111 protocol header.
If integer, the bit field have the following
meaning (the action described is executed if the
bit is 1):
Integer OR
String
1
Field Action
0
1
Reload settings from Flash
Clear almanac data and don’t load if
from flash
2
3
Clear Ephemeris data
Clear ionosphere and troposphere
corrections
4
5
6
7
Invalidate stored position
Invalidate stored time
Copy oscillator offset from Settings
Sticky bit –if ‘1’ the action are repeated
at each reset
If String, the following values are allowed:
FACTORY See Section 2.1 for definition.
COLD
WARM
HOT
See Section 2.1 for definition.
See Section 2.1 for definition.
See Section 2.1 for definition.
Checksum
Message
terminator
*xx
<CR> <LF>
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
Examples:
$PNMRX111*xx: Resets the system
C.8 $PNMRX112, Power Mode Control
This message is used to configure the operating modes of the receiver. Low power modes can be activated
and configured. Low power mode starts to work only after the receiver has a complete and up to date
almanac and it can produce the fix.
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
19
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
Field
Format
Min
Max
Notes
chars
chars
Message ID
Operating Mode
$PNMRX112
Into
6
1
8
1
PNMRX112 protocol header.
0
1
= Fully Active
= LDCM1
OFF period
Checksum
Message
Into
*xx
<CR> <LF>
1
(0) 3
2
2
3
2
RF off time in seconds [5:10]
2 digits.
ASCII 13, ASCII 10.
terminator
Examples:
$PNMRX112, 1, 5*xx: enable low power mode (with 5 seconds off time between 2 fixes)
C.9 $PNMRX113, GPS Core Activity Control
This message is used to disable GPS Core activities (data extraction and fix generation) on the node. The
goal of this message is to disable these two functions when they need to be overwritten by external values
for test purpose. A reset message must be set after the PNMRX113 in order to resume operation. For
instance if a different almanac needs to be downloaded to the receiver then, data extraction must be
disabled, then the new almanac can be downloaded. Areset command will then be used to restore operation
with hen new almanac.
Field
Format
Min
Max
Notes
chars
chars
Message ID
Checksum
Message
$PNMRX113
*xx
<CR> <LF>
6
(0) 3
2
8
3
2
PNMRX113 protocol header.
2 digits.
ASCII 13, ASCII 10.
terminator
Examples:
$PNMRX113*xx: Stops GPS Core activities.
C.10 $PNMRX300, Almanac Data Transfer
This message format is used to transfer the almanac data between nodes; it uses a packed hexadecimal
format to transfer almanac data for each of the available SV’s. Since the Almanac data is large and can take
time to transfer over a slow serial interface, the data is divided into individual messages for each of the SV’s.
These messages are transmitted sequentially and can be interleaved with other messages to prevent the
Almanac data blocking higher priority messages such as scheduled PVT information. The data for these
messages is expressed as signed or unsigned fixed point values which have been scaled from the floating
point values used in the position solution. The appropriate scaling factors are included in the table. There is
1 message for each satellite for which data is available. When transmitted these messages are generated in
ascending order of SV Id, when being sent to the node these can be sent in any order, each message is
individually interpreted and processed.
Field
Message ID
SV Id
Format
$PNMRX300
Int
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
width
scale
Notes
PNMRX300 protocol header.
Decimal Satellite vehicle Id from 1 to 32.
16 bit signed int, scale.
Bitmap of satellite health.
Week Number
16 bit signed int.
16 bit signed int.
24 bit unsigned int.
24 bit signed int.
24 bit signed int.
8
2
4
2
2
4
4
6
6
6
6
6
6
6
e
2-21
Health
Toa
δi
2-19
2-38
2-11
2-23
2-23
2-23
2-23
2-20
2-68
Omega dot
Root_A
Omegazero
Perigee
Mean
Mean anomaly
af0
af1
24 bit signed int.
24 bit signed int.
11 bit signed int.
11 bit signed int.
Checksum
*xx
(0) 3
2 digits.
Specifications subject to change without prior notice
20
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
<CR> <LF> ASCII 13, ASCII 10.
Rikaline
Message
2
terminator
C.11 $PNMRX301, Ephemeris Data Transfer
This message format is used to transfer the ephemeris data between nodes; it uses a packed hexadecimal
format to transfer ephemeris data for each of the available SV’s. Since the Ephemeris data is large and can
take time to transfer over a slow serial interface, the data is divided into individual messages for each of the
SV’s. These messages are transmitted sequentially and can be interleaved with other messages to prevent
the Ephemeris data blocking higher priority messages such as scheduled PVT information. The data for
these messages is expressed as signed or unsigned fixed point values which have been scaled from the
floating point values used in the position solution. The appropriate scaling factors are included in the table.
The ephemeris data for each satellite is divided into 3 separate messages with sequence numbers to
identify them, the contents of these frames reflects the contents of the appropriate subframes 1,2,3
transmitted from the SV’s. When transmitted these messages are generated in ascending order of SV Id and
sequence number, when being sent to the node these can be sent in any order, provided that the 3
messages for any individual satellite are grouped together, each message is individually interpreted and
after a group of 3 valid messages for an SV the ephemeris for that SV is updated independently. The 3
message formats are illustrated in the following tables
PNMRX301 message 1 field list
Field
Message ID
Satellite vehicle Id Int
Format
$PNMRX301
width
scale
Units
Notes
PNMRX301 protocol header.
Decimal satellite vehicle Id
from 1 to 32.
8
2
Subframe Id
Week number
Health
Int
1
3
2
1
2
Subframe number 1.
10 bit week number.
6 bits.
User range accuracy.
8 bits.
Hex
Hex
Hex
Weeks
URA
Time Group Delay Hex
2-31
Seconds
IODC
Toc
Af2
Af1
Af0
Checksum
Message
terminator
Hex
Hex
Hex
Hex
Hex
*xx
<CR> <LF>
3
4
2
4
6
(0) 3
2
10 bit integer.
16 bits.
8 bit signed integer.
16 bit signed integer.
22 bit signed integer.
2 digits.
2-4
2-31
2-43
2-31
sec/sec2
sec/sec
Seconds
ASCII 13, ASCII 10.
PNMRX301 message 2 field list
Field
Message ID
Satellite Vehicle Id Int
Format
$PNMRX301
width
scale
units
Notes
PNMRX301 protocol header.
Decimal satellite vehicle id from
1 to 32.
8
2
Subframe Id
Iode
Int
Hex
1
2
Subframe number 2.
8 bits, lower 8 bits of matching
iodc.
16 bit signed integer.
16 bit signed integer.
Crs
Hex
Hex
4
4
2-5
Meters
Semi-
circles/sec
Motion difference
(△n)
Mean anomaly
Cuc
E
Cuc
Root A
Toe
Checksum
Message
terminator
2-43
Hex
Hex
Hex
Hex
Hex
Hex
*xx
<CR> <LF>
8
4
8
4
8
4
(0) 3
2
2-31
2-29
2-33
2-29
2-19
24
Semi- circles 32 bit signed integer.
Radians
16 bit signed integer.
32 bit signed integer.
16 bit signed integer.
32 bit signed integer.
16 bit unsigned integer.
2 digits.
Radians
Meters 1/4
seconds
ASCII 13, ASCII 10.
Specifications subject to change without prior notice
21
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
PNMRX301 message 3 field list
Field
Message ID
Satellite
Vehicle Id
Subframe Id
Cic
Omega zero
Cis
I Zero
Format
$PNMRX301
Int
width
scale
units
Notes
8
2
PNMRX301 protocol header.
Decimal satellite vehicle id
from 1 to 32.
Int
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
*xx
<CR> <LF>
1
4
8
4
4
4
8
6
2
Subframe number 3.
16 bit signed integer.
32 bit signed integer.
16 bit signed integer.
32 bit signed integer.
16 bit signed integer.
32 bit signed integer.
24 bit signed integer.
Lower 8 bits of matching iodc.
14 bit signed integer.
2 digits.
2-29
2-31
2-29
2-31
2-5
Radians
Semi- circles
radians
Semi- circles
Meters
Semi- circles
Semi- circles/sec
Crc
Perigree
Omega dot
Iode
2-31
2-43
I dot
4
(0) 3
2
2-43
Semi- circles/sec
Checksum
Message
terminator
ASCII 13, ASCII 10.
C.12 $PNMRX302, Ionospheric correction
Field
Format
width
scale
units
Notes
Message ID
Satellite Vehicle Id Int
$PNMRX302
8
2
PNMRX301 protocol header.
Decimal satellite vehicle id
from 1 to 32.
α 0
α 1
α 2
α 3
β 0
β 1
β 2
β 3
Hex
Hex
Hex
Hex
Hex
Hex
Hex
Hex
2
2
2
2
2
2
2
2
2-30
2-27
2-24
2-24
211
214
216
216
Checksum
Message
terminator
*xx
<CR> <LF>
(0) 3
2
2 digits.
ASCII 13, ASCII 10.
C.13 $PNMRX303,UTC time
Field
Message ID
Satellite
Vehicle Id
Data – A0
Data – A1
Delta t LS
Tot
Format
$PNMRX303
Int
width scale
units
Notes
8
8
PNMRX301 protocol header.
Decimal satellite vehicle id from 1 to 32.
Hex
Hex
Hex
Hex
Hex
Hex
2
2
2
2
2
2
Constant term of the polynomial
First-order term of the polynomial.
Delta time due to leap seconds.
Reference time for UTC.
UTC reference week number
Week number at which the leap second
becomes effective.
WNt
WNlsf
DN
Delta t LSF
Hex
Hex
2
2
Day number B2.
Delta time due to leap seconds if leap
second is ini the past.
NumBlocks
Time Offset
Checksum
Message
Hex
Hex
*xx
<CR> <LF>
2
2
(0) 3
2
Number of 20 year blocks
Time offset for current time zone
2 digits.
ASCII 13, ASCII 10.
terminator
Specifications subject to change without prior notice
10F, 64, Kang-Din Road, Taipei 108, Taiwan
22
Rikaline International Corp.
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
C.14 $PNMRX304, GPS Constellation Health
Field
Format
Min
chars
8
Max chars
Notes
Message ID $PNMRX304
8
PNMRX110 protocol header.
Health
Code
Health
Char
Char
TBD
TBD
SV health code if ≠0.
TBD
TBD
SV health code if ≠0.
Code
Checksum
Message
terminator
*xx
<CR> <LF>
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
C.15 $PNMRX600, Report Software Version
By sending the $PNMRX600*00 string to the receiver, the version of the software is output.
C.16 $PNMRX601, Enter ISP mode
By sending the $PNMRX601*00 string to the receiver, the receiver enters ISP mode.
C.17 $PNMRX603, Settings report
By sending the $PNMRX603*00 string to the receiver, the current value of the settings is output. The content
of settings is split in 4 messages.
PNMRX603 message 0
Field
Format
Min
Max chars
Notes
chars
Message ID
Message Nb Int
Message
Sequence
(7 times)
Message
Delay
$PNMRX603
8
1
1
8
1
1
PNMRX603 protocol header.
0
Message Sequence
7xInt
7xInt
Hex
1
8
1
8
Message Delay
(7 times)
NMRX
Nemerix Message Enabled
Message
Enabled
Uart Settings Hex
8
(0) 3
2
8
3
2
Uart settings
2 digits.
ASCII 13, ASCII 10.
Checksum
Message
terminator
*xx
<CR> <LF>
PNMRX603 message 1
Field
Format
Min
Max
Notes
chars chars
Message ID
Message Nb
$PNMRX603
Int
Hex
Hex
Hex
Hex
Hex
Hex
Hex
8
1
2
2
2
2
2
2
2
8
1
2
2
2
2
2
2
2
PNMRX603 protocol header.
1
Ionospheric Data A0
Ionospheric Data A1
Ionospheric Data A2
Ionospheric Data A3
Ionospheric Data B0
Ionospheric Data B1
Ionospheric Data B2
Ionospheric Data B3
Ionospheric correction α0 coefficient.
Ionospheric correction α1 coefficient.
Ionospheric correction α2 coefficient.
Ionospheric correction α3 coefficient.
Ionospheric correction β0 coefficient.
Ionospheric correction β1 coefficient.
Ionospheric correction β2 coefficient.
Ionospheric correction β3 coefficient.
Ionospheric Data Valid. If 0 the data are
invalid.
Hex
2
1
2
1
Ionospheric Data Valid Hex
Num Blocks
Time Offset (Local
Hex
Int
1
(-)2
1
(-)2
Number of 20 year blocks
Offset of local time zone (-13) to 13
Specifications subject to change without prior notice
23
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
GPS Receiver Board
GPS-24 / 24A Operating Manual
Rikaline
zone hours)
Time Offset (Local
zone minutes)
Checksum
Int
(-)2
(-)2
*xx
<CR> <LF>
(0) 3
2
3
2
2 digits.
ASCII 13, ASCII 10.
Message terminator
NMRX603 message 2
Field
Format
Min
Max
Notes
chars chars
Message ID
Message Nb
MaxPDOP
MaxHDOP
Invalid Sv
$PNMRX603
Int
Float
Float
Hex
8
1
8
1
PNMRX603 protocol header.
2
8
8
Min CNO
Min Elevation
Max TM
Float
Float
Int
2
2
(0) 3
2
2
2
3
2
Max Sv for fix
Checksum
Message terminator
Int
*xx
<CR> <LF>
2 digits.
ASCII 13, ASCII 10.
PNMRX603 message 3
Field
Format
Min
Max
Notes
chars chars
Message ID
Message Nb
$PNMRX603
Int
Int
Int
Int
Hex
Int
*xx
8
1
3
3
3
1
1
(0) 3
2
8
1
8
8
8
1
8
3
2
PNMRX603 protocol header.
3
Acq threshold 1
Acq threshold 2
Noise floor
Kalman Mode
Default altitude
Checksum
2 digits.
ASCII 13, ASCII 10.
Message terminator
<CR> <LF>
PNMRX603 message 4
Field
Format
Min
Max
Notes
chars chars
Message ID
$PNMRX603
8
1
1
1
8
1
1
8
PNMRX603 protocol header.
4
EGM96 geoids correction
Reference number of the appropriate map
datum to apply
Message Nb
Correction Mode
Map Datum
Int
Int
Int
Dx
Dy
Dz
Int
Int
Int
Int
1
1
1
1
1
8
8
8
8
8
3
2
x offset in meters
y offset in meters
z offset in meters
Inverse flatness of reference geode
Semi major axis of reference geode
2 digits.
Inverse flatness
Major axis
Checksum
Message terminator
Int
*xx
<CR> <LF>
(0) 3
2
ASCII 13, ASCII 10.
Examples:
$PNMRX603*xx: Display the content of the Settings stored in NVRam
Specifications subject to change without prior notice
24
Rikaline International Corp.
10F, 64, Kang-Din Road, Taipei 108, Taiwan
|
RCA CRT Television 27FS24T User Guide
Realistic Scanner PRO 2023 User Guide
Rinnai Air Conditioner 556FAIII User Guide
Royal Sovereign Laminator PL 1310 User Guide
Samsung Stereo System HT Z110 User Guide
Sangean Electronics Radio WFT 1 User Guide
Sanyo Battery Charger UF553443R User Guide
Sarlo Trimmer CS 16 User Guide
Savin Printer SDC103E User Guide
Scag Power Equipment Lawn Mower STT61V 31EFI SS User Guide